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Using the methods of mathematical simulation, the characteristic features of a stationary temperature field in
a cooled plane isotropic wall subjected to local frictional heating from a circular source in the regime of
spinning friction are investigated. The possibility of the existence of an optimal wall thickness which ensures
a minimum temperature of its most heated point has been established.

In the mathematical theory of heat conduction [1–3] an important role is played by investigations related
to the study of the characteristic features of formation of a stationary temperature field in a plane isotropic wall
one of the surfaces of which (unprotected) is cooled by the environment and the other (protected or unprotected)
is exposed to the action of an external axisymmetrical heat flux, either spatially distributed with a Gaussian-type
intensity [4–6] or concentrated (circular, annular) [7–9]. The results of the analysis carried out [4–9] show that ir-
respective of the type of the acting heat flux there is an optimum thickness of the cooled wall which ensures a
minimum steady-state temperature of its most heated point. As far as the present authors are aware, similar results
of investigations that establish the possibility of existence of an optimum (in a certain sense) thickness of the
cooled wall exposed to a local influence of heat sources of another physical nature, for example, as a result of
frictional heating of the wall when the spinning friction regime is implemented [10], are absent, which can be ex-
plained by the specifics of the formation of corresponding temperature fields [10, 11]. In what follows, using the
conventional terminology [10, 11], the indicated regime of frictional heating will be determined as a particular case
of the regime of sliding friction, when relative sliding of contacting bodies represents rotation around the axis co-
inciding with the common normal to the surface of contact.

In the present work, we consider a plane isotropic wall of constant thickness h, one of the surfaces of which
is exposed to the action of the environment with a constant temperature Ten

 0  and heat-transfer coefficient α0 and is
subjected to local frictional heating in the regime of friction due to the spinning of a circular source of radius R at an
angular velocity ω, whereas the other is cooled by the environment with a constant temperature Ten

 h  and heat-transfer
coefficient αh. On the assumption that pressure is distributed uniformly in the zone of frictional contact, the density of
the heat flux formed as a result of heat generation in this zone of contact and spent to heat the wall is defined as q
= kτωr, r ≤ R, where τ is the specific friction force; k 8 (0, 1] is the coefficient that specifies the distribution of heat
fluxes in the materials of the friction pair [12].

The main aim of the investigations carried out is to analyze the characteristic features of a stationary tempera-
ture field in a wall being cooled and subjected to local frictional heating in the regime of spinning friction. Based on
the above and initial assumptions, we will avail ourselves of the following mathematical model:
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where at any fixed x 8 (0, H) the functions θ(ρ, x) and Q(ρ) as functions of ρ are the inverted transforms of the in-
tegral Hankel transformation of zero order [2], which corresponds to the physically evident conditions of symmetry:
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The form of the function Q(ρ) is established unambiguously by the implemented regime of frictional heat generation.
Thus, in particular, in friction due to spinning with a constant angular velocity ω ≡ ω0 – const

Q (ρ) = Q0ρ [η (ρ) − η (ρ − 1)] .

A further analysis is limited by consideration of precisely this regime of local frictional heating of the wall being
cooled.

By virtue of the linearity of the initial mathematical model (1)–(3) the function θ(ρ, x) can be represented as
a sum of its three components [7, 8]:

θ (ρ, x) = θ1 (x) + θ2 (ρ, x) + θ3 (ρ, x) .

The function θ1(x) satisfies Eqs. (1)–(3) at Q(ρ) = 0, i.e., it is the solution of the problem on finding a sta-
tionary temperature field in a plane isotropic wall provided that heat exchange with the environments having constant
temperatures Ten

 0  and Ten
 h  are implemented according to the Newton law [2].

The function θ2(ρ, x) satisfies Eq. (1), boundary condition (2) at µ = 0, and a homogeneous analog of bound-
ary condition (3):

∂θ2 (ρ, x)
∂x



x=H

 = − Bi θ2 (ρ, x)
x=H

 ,

i.e., it determines the stationary temperature field in a plane isotropic wall, one of the surfaces of which is cooled by
the environment of constant temperature and the other is subjected to a local frictional heating in the regime of spin-
ning friction.

The interpretation of the function θ3(ρ, x) that satisfies Eq. (1) and the boundary conditions
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is analogous to the interpretation of the function θ1(x).
With account for the analysis carried out and the well-known results obtained in [6–9] we may state that the

solution of the problem posed is directly related to the study of the properties of the function θ2(ρ, x) at x = 0 defined
by the following mathematical model:

221



1

ρ
 

∂

∂ρ
 



ρ 

∂θ2

∂ρ




 + 

∂2θ2

∂x
2  = 0 ,   ρ ≥ 0 ,   0 < x < H ;

∂θ2 (ρ, x)
∂x



x=0

 = − Q0ρ [η (ρ) − η (ρ − 1)] ;   
∂θ2 (ρ, x)

∂x



x=H

 = − Bi θ2 (ρ, x)
x=H

 . (4)

Let

V (p, x) = ∫ 
0

+∞

θ2 (ρ, x) ρJ0 (pρ) dρ , (5)

G (p) = ∫ 
0

+∞

Q (ρ) ρJ0 (pρ) dρ = Q0 ∫ 
0

1

ρ2
J0 (pρ) dρ = 

Q0

p
 



J1 (p) − 

π
2p

 

J1 (p) H0 (p) − J0 (p) H1 (p)






(6)

be the images of the integral Hankel transformation of zero order [2] of the functions θ2(ρ, x) and Q(ρ), respectively.
Using the well-known results of the theory of integral transformations [1–3], we can show that the image V(p, x) is
the solutions of the following boundary-value problem:
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where the image G(p) of the function Q(ρ) is determined by equality (6). The solution of Eq. (7) can be presented in
the form [7, 8]

V (p, x) = c1 (p) exp (− xp) + c2 (p) exp (xp)

and it must satisfy boundary conditions (8) and (9); this leads to a system of linear algebraic equations for finding the
functionals ci(p), i 8 


1, 2


:

p 
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The determination of the functionals ci(p), i 8 

1, 2


 that satisfy the system (10)–(11) completes the solution of the

problem on finding the stationary temperature field of the cooled wall subjected to local frictional heating in the re-
gime of spinning friction in the images of the integral Hankel transformation (5) employed.

To solve the problem posed it is sufficient to know the temperature θ2(ρ, x) of the surface x = 0 of the plane
isotropic wall considered. In the images of the integral Hankel transformation (5) at x = 0 the solution of problem (7)–
(9) can be presented in the following form:
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Having inverted the integral Hankel transformation of zero order [2], we  find a stationary distribution of temperature
on the surface of a plane isotropic wall subjected to a local frictional heating:
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where the image G(p) of the function Q(ρ) is defined by equality (6).
At the limiting values of the wall thicknesses H = +0 and H = +∞, the integral on the right side of equality

(12) can be represented as [13, 14]
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Depending on the values of ρ, the first of the integrals on the right side of equality (13) can be calculated explicitly
[13, 14]:
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The results of calculations of a stationary temperature profile of the surface of the wall subjected to local fric-
tional heating in the spinning friction regime are presented partially in Fig. 1. The calculation was performed at Q0 =
1 and Bi = 1 and at different values of the wall thickness H. We note the principal difference in the forms of the
stationary temperature profile given in Fig. 1 and those observed when the cooled wall was heated through a circular
region [7–9] and when the wall was exposed to a spatially distributed heat flux with a Gaussian-type intensity [5, 6].
The essential difference is that in the case of local frictional heating of the cooled wall in the spinning friction regime
the point of temperature maximum of its surface x = 0 depends on the wall thickness. The result obtained is of fun-
damental importance in determining the conditions of the existence and determination of the optimum thickness of the
cooled wall if the optimality criterion is taken to be the condition of ensuring the minimum steady-state temperature
at the most heated point of the wall [5–9]. This, in particular, allows one to determine the sufficient conditions for the
existence of the optimum thickness of a one-layer wall [5] and of a coated wall [6] exposed to an axisymmetrical heat
flux with a Gaussian-type intensity.

In the considered regime of local frictional heating with spinning friction, the maximum heat release is at-
tained on the circle of radius ρ = 1, since the linear velocity of the motion of the points of this circle is a maximum.
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Here it is physically evident that the efflux of heat into the ring 1 < ρ < +∞ will prevail over that into the circle
0 ≤ ρ < 1. Therefore, the radius ρ∗ of the circle formed by the points of the temperature maximum of the surface x =
0 of the cooled wall during its frictional heating in the spinning friction regime must not exceed the radius of the cir-
cular source ρ = 1, i.e., ρ∗ 8 (0, 1). In particular, if we restrict the analysis to the simplest case H = +∞, then accord-
ing to (13) we obtain
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Having availed ourselves of equality (14), we can easily see that

∃  lim
ρ→0
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 = 0 ,

which allows us to state (see Fig. 1) that (0, 0) is the point of the local minimum. At the same time, according to the
results of computational experiment, the temperature maximum at Q0 = 1 is attained on the circle of radius ρ∗ =
0.662.

Figure 2 presents some of the results obtained by calculating the dependence of the dimensionless temperature
θ2(ρ∗, 0) of the most heated points of the cooled wall subjected to local frictional heating in the regime of spinning
friction on its thickness H at Bi = 1. For convenience in the representation of graphical information the wall thickness
H is laid on the horizontal axis and the value θ∗ = θ2(ρ∗, 0)/ Q0 proportional to the steady-state temperature of the
points of the temperature maximum of the wall considered is laid on the vertical axis.

Fig. 1. Stationary temperature profile of the surface x = 0 of the cooled wall
of different thicknesses H subjected to local frictional heating in the regime of
spinning friction: 1) H = 0.05; 2) 1; 3) 10; 4) +∞.

Fig. 2. Dependence of the dimensionless quantity θ∗ on the thickness H of the
wall subjected to local frictional heating in the regime of spinning friction.
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The results of computational experiments performed using equalities (12), (6) and partially presented in Fig. 2
point to the possibility of existence of an optimum thickness of the cooled wall in the considered regime of local fric-
tional heating which ensures a minimum steady-state temperature of its most heated points. We also note that an in-
crease in the intensity of heat transfer on the surface x = H of the wall (increase in Bi) leads to a monotonic decrease
(down to zero) of an optimum wall thickness.

NOTATION

a, thermal diffusivity, m2 /sec; Bi, Biot number; E(•), complete elliptic integral of the second kind; h, wall
thickness, m; H, dimensionless wall thickness; Hν(•), Struve function of order ν; Jν(•), Bessel function of the first
kind of order ν; k, coefficient of the distribution of heat fluxes; K(•), complete elliptic integral of the first kind; p,
parameter of the Hankel integral transformation; q, heat flux density, W/ m2; Q, dimensionless heat flux density; r,
spatial variable, m; R, radius of a circular source, m; s, parameter of the Laplace integral transformation; T, tempera-
ture, K; x, dimensionless spatial variable; z, spatial variable, m; α, heat-transfer coefficient, W/(m2⋅K); η(•), Heaviside
function; θ, dimensionless temperature; λ, thermal conductivity, W/(m⋅K); µ, similarity simplex as a measure of the re-
lationship between the coefficients of heat transfer on the surfaces x = 0 and x = h of the wall; ρ, dimensionless spa-
tial variable; τ, specific friction force; N/ m2; ω, angular velocity of rotation 1/sec. Subscripts: 0 and h, surfaces x =
0 and x = h of the wall, respectively; en, environment.
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